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Abstract 
Since battery life directly impacts the extent and duration of 
mobility, one of the key considerations in the design of a mo- 
bile embedded system should be to maximize the energy de- 
livered by the battery, and hence the battery lifetime. To facil- 
itate exploration of alternative implementations for  a mobile 
embedded system, in this paper we address the issue of de- 
veloping a fast and accurate battery model, and providing a 
framework for battery life estimation of Hardware/Software 
(HW/SW) embedded systems. 

We introduce a stochastic model of a battery, which can 
simultaneously model two key phenomena affecting the bat- 
tery life and the amount of energy that can be delivered by 
the battery: the Rate Capacity effect and the Recovery ef- 
fect. We model the battery behavior mathematically in terms 
of parameters that can be related to physical characteristics 
of the electro-chemical cell. We show how this model can be 
used for battery life estimation of a HW/SW embedded sys- 
tem, by calculating battery discharge demand waveforms us- 
ing a power co-estimation technique. Based on the discharge 
demand, the battery model estimates the battery lifetime as 
well as the delivered energy. Application of the battery life 
estimation methodology to three system implementations of 
an example TCP/IP network interface subsystem demonstrate 
that different system architectures can have significantly dif- 
ferent delivered energy and battery lifetimes. 

1 Introduction 
As the need for mobile computation and communication 
increases, there is a strong demand for design of Hard- 
ware/Software (HW/SW) Embedded Systems for mobile ap- 
plications. Maximizing the amount of energy that can be de- 
livered by the battery, and hence the battery life, is one of the 
most important design considerations for a mobile embedded 
system, since it  directly impacts the extent and duration of the 
system's mobility. To enable exploration of alternative imple- 
mentations for a mobile system, it is critical to develop fast 
and accurate battery life estimation techniques for embedded 
systems. In this paper, we focus on developing such a battery 
model, and provide a framework for battery-life estimation of 
HW/SW embedded systems. 

Previous research on low power design techniques [ 1, 21, 
tries to minimize average power consumption either by re- 
ducing the average current drawn by a circuit keeping the 
supply voltage fixed or by scaling the supply voltage stati- 
cally or dynamically. However, as shown in this paper, de- 
signing to minimize average power consumption does not 
necessarily lead to optimum battery lifetime. Additionally, 
the above techniques assume that the battery subsystem is an 
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ideal source of energy which stores or delivers a fixed amount 
of energy at a constant output voltage. In reality, it may not be 
possible to extract the energy stored in the battery to the full 
extent as the energy delivered by a battery greatly depends on 
the current discharge profile. Hence, accurate battery mod- 
els are needed to specifically target the battery life and the 
amount of energy that can be delivered by a battery in the 
design of a mobile system. 

The lifetime of a battery, and the energy delivered by a 
battery, for a given embedded system strongly depend on the 
current discharge profile. If a current of magnitude greater 
than the rated current of the battery is discharged, then the 
efficiency of the battery (ratio of the delivered energy and the 
energy stored in the battery) decreases, in other words, the 
battery lifetime decreases [3, 101. This effect is termed as the 
Rate Capacity Effect. Additionally, if a battery is discharged 
for short time intervals followed by idle periods, significant 
improvements in the delivered energy seem possible [ 11,131. 
During the idle periods, also called Relaxation Times, the bat- 
tery can partially recover the capacity lost in previous dis- 
charges. We call this effect as the Recovery Effect. 

An accurate battery model, representing fine-grained 
electro-chemical phenomenon of cell discharge using Partial 
Differential Equations (PDE), was presented in [ 141. How- 
ever, it takes prohibitively long (days) to estimate the battery 
lifetime for a given discharge demand of a system. Hence, 
the PDE models cannot be used for design space exploration. 
Some SPICE level models of battery have been developed 
[6, 71, which are faster than the PDE model. However, the 
SPICE models can take into account the effect of Rate Ca- 
pacity only. Based on the Rate Capacity effect, a system- 
level battery estimation methodology was proposed in [4,5]. 
Recently, a Discrete-Time battery model was proposed for 
high-level power estimation [8]. Though it  is faster than the 
previous models, it does not consider the Recovery effect. 

In this paper, we describe a stochastic battery model, tak- 
ing into account both the Recovery effect and the Rate Ca- 
pacip effect. The proposed model is fast as it is based on 
stochastic simulation. Also, by incorporating both Recov- 
ery and Rate Capacity effects, it represents physical battery 
phenomena more accurately than the previous fast models. 
We also show how this model can be used for estimating 
the battery lifetime and the energy delivered by the battery 
for a HWlSW system, by calculating battery discharge de- 
mand waveforms using a power co-estimation technique [9]. 
Based on the discharge demand, the battery model estimates 
the battery lifetime as well as the delivered energy. Finally, 
we demonstrate how this framework can be used for system 
level exploration using a TCP/IP network interface subsys- 
tem. The results indicate that the energy delivered by the 
battery and the lifetime of the battery can be significantly in- 
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creased through architectural explorations. 
The rest of the paper is organized as follows. Section 

2 motivates the need for an accurate battery life estimation 
methodology by illustrating that the battery life and the en- 
ergy delivered by the battery can be affected significantly by 
tradeoffs at the system level. Section 3 provides background 
on the physical phenomena inside a battery, which affect the 
the battery lifetime as well as the delivered energy. The pro- 
posed battery model is described in section 4. The method- 
ology used to calculate current waveforms is described in 
section 5. In section 6, we demonstrate how the battery 
life estimation methodology can be used to evaluate alternate 
implementations in the design of Battery Efficient Systems. 
Section 7 concludes the paper and explores future research. 

2 Motivation : Exploration For Bat- 
tery Efficient Architectures 

In this section, we present the effect of system architectures 
on the delivered energy and the lifetime of battery. Our inves- 
tigations motivate the need for fast and accurate battery life 
estimation techniques that can used for system level explo- 
ration. 

We analyze the performance of an example TCP/IP net- 
work inteface subsystem with respect to the delivered en- 
ergy and the lifetime of the battery. The subsystem con- 
sists of the part of the TCP/IP protocol stack performing the 
checksum computation (Figure 1). CreafePacket receives a 
packet, stores it in a shared memory, and enqueues its start- 
ing address. IP-Chk periodically dequeues packet informa- 
tion, erases specific bits of the packet in memory, and coor- 
dinates with Chksum to verify the checksum value. Figure 1 
shows a candidate architecture for the TCP/IP system where 
Createpacket and Packet-Queue are software tasks mapped 
to a SPARC processor, while IP-Chk and Chksum are each 
mapped to dedicated hardware. Packet bits are stored in a 
single shared memory accessed through a common system 
bus. 

Figure 1 : Architecture of TCP/IP Network Subsystem 
We study the effect of alternate ways of packet processing 

by the system on the battery lifetime as well as the energy de- 
livered by the battery. In the first implementation (SysA), 
the packets are processed sequentially as shown in Figure 
2(a). To estimate the battery lifetime and the energy deliv- 
ered by the battery of the implementation, the current profiles 
of each component of the system need to be calculated. Fig- 
ures 2(b) and (c) show the current demands (in mA) for some 
of the components of the system for S y s A  plotted over time 

(in ms), calculated using the methodology described in Sec- 
tion 5. The cumulative current profile: for S y s A  is shown in 
Figure 2(d). 
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Figure 2: S y s A  : Scheduling of Packets and Current Dis- 
charge Demands 

Figure 3(a) shows another way of scheduling the packets. 
In this implementation (SysB), instead of sequential process- 
ing of packets as in SysA,  the first two packets are processed 
in a pipelined manner; for example, while Chksum is pro- 
cessing the first packet, CrearePackcr starts writing the next 
packet to memory. The cumulative current profile for S y s B  
is shown in Figure 3(b). 
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Figure 3: S y s B  : Scheduling of Packets and the Cumulative 
Current Demand 

As shown in Table 1, the average current (and hence aver- 
age power consumed) is very similar for both the alternative 
system implementations. Table 1 shows the battery lifetimes 
and the specific energy delivered by the battery, calculated 
using an accurate battery model [14] for both implementa- 
tions, S y s A  and SysB.  The table also reports the number of 
packets processed by each system blefore the battery used by 
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Discharge Average Battery 
Demand Cum. (mA) Life (ms) 
SysA 123.8 357053 
SvsB 124.2 536484 

The results show that the battery life of a mobile embedded 
system can be improved significantly by system level trade- 
offs. For instance, as shown in Table 1 ,  S y s A  can process 
119018 packets before the battery used for the system is dis- 
charged, where as SysB can process 178828 packets using 
the same battery. The results also show that the delivered 
energy and the lifetime of a battery can be significantly dif- 
ferent for current demands with the same average current re- 
quirement. Above results motivate us to develop a fast and 
accurate battery model that can be used in design exploration 
for battery optimal design of mobile embedded systems. 

The next section provides a brief background on the oper- 
ation of a battery, emphasizing the physical phenomena that 
affect the battery lifetime and the energy delivered by the bat- 
tery. 

A battery cell consists of an anode, a cathode, and electrolyte 
that separates the two electrodes and allows transfer of elec- 
trons as ions between them. During discharge, oxidation of 
the anode (Li for LiIon battery) produces charged ions (Li+), 
which travel through the electrolyte and undergo reduction at 
the cathode. The reaction sites (parts of the cathode where re- 
ductions have occurred) become inactive for future discharge 
because of the formation of an inactive compound. Rate Ca- 
pacity Effect (dependency of energy delivered by a battery 
on magnitude of discharge current) and Recovery Effect (re- 
covery of charged ions near cathode) are two important phe- 
nomena that affect the delivered energy and the lifetime of a 
battery. A short description of the physical phenomena re- 
sponsible for these effects follows. 

The lifetime of a cell depends on the availability and reach- 
ability of active reaction sites in the cathode. When discharge 
current is low, the inactive sites (made inactive by previous 
cathode reactions) are distributed uniformly throughout the 
cathode. But, at higher discharge current, reductions occur at 
the outer surface of the cathode making the inner active sites 
inaccessible. Hence, the energy delivered (or the battery life- 
time) decreases since many active sites in the cathode remain 
un-utilized when the battery is declared discharged. 

Besides non-availability of active reaction sites in the cath- 
ode during discharge, the non-availability of charged ions 
(lithium ions for lithium insertion cell) can also be a factor de- 
termining the amount of energy that can be delivered by a bat- 
tery [ 1 11. Concentration of the active species (charged ions 
i.e. Li+) is uniform at electrode-electrolyte interface at zero 
current. During discharge, the active species are consumed 
at the cathode-electrolyte interface, and replaced by new ac- 
tive species that move from electrolyte solution to cathode 

3 Battery Background 

Del. Spec. Packets 

15.12 119018 
Energy (Wh/Kg) Processed 

18.58 178828 

through diffusion. However, as the intensity of the current in- 
creases, the concentration of active species decreases at the 
cathode and increases at the anode and the diffusion phe- 
nomenon is unable to compensate for the depletion of active 
materials near the cathode. As a result, the concentration of 
active species reduces near the cathode decreasing the cell 
voltage. However, if the cell is allowed to idle in between 
discharges, concentration gradient decreases because of dif- 
fusion, and charge recovery takes place at the electrode. As 
a result, the energy delivered by the cell, and hence the life- 
time, increases. Summarizing, the amount of energy that can 
be delivered from a cell and the lifetime of a cell, depend on 
the value of the discharge current and the idle times in the 
discharge demand. In the next subsection, we define some 
notations which will be used in the rest of the paper. 

3.1 Notations and Definitions 
A battery cell is characterized by the open-circuit potential 
( V w ) ,  i.e., the initial potential of a fully charged cell under 
no-load conditions, and the cut-off potential (V,,) at which 
the cell is considered discharged. Two parameters are used 
to represent the cell capacity: the theoretical and the nominal 
capacity. The former is based on the amount of energy stored 
in the cell and is expressed in terms of ampere-hours. The 
latter represents the energy that can be obtained from a cell 
when it is discharged at a specific constant current (called the 
rated current, C,-&d). Battery data-sheets typically represent 
the capacity of the cell in terms of the nominal capacity. 

Finally, to measure the cell discharge performance, the fol- 
lowing two parameters are considered : Battery Lifetime and 
Delivered Specific Energy. Battery Lifetime is expressed as 
seconds elapsed until a fully charged cell reaches the V,, 
voltage. Delivered Specific Energy is the amount of energy 
delivered by the cell of unit weight, i.e., expressed as watt- 
hour per kilogram. 

In the next section, we describe our basic stochastic 
battery-model that captures the Recoveg: Effect, and a de- 
scriution of an extension of the model to incorporate the Rate 
CadaciQ Effect. 
4 Battery Models 
The fine-grained electro-chemical phenomena underlying the 
cell discharge are represented by the accurate model, based 
on PDE (Partial Differential Equations) [14], which involve 
a large number of parameters depending on the type of cell. 
The set of results that can be derived through the PDE model 
is limited since as the discharge current and the cut-off po- 
tential decrease, the computation time becomes exceedingly 
large. Hence, the accurate PDE model cannot be used for 
system-level exploration of a mobile embedded system. In 
the following section, we present a more tractable parametric 
model that captures the essence of the recovery mechanism. 

4.1 Stochastic Battery Model 
We model the battery behavior mathematically in terms of 
parameters that can be related to the physical characteristics 
of an electro-chemical cell [15, 161. The proposed stochastic 
model focuses on the Recovery Effect that is observed when 
Relaxation Times are allowed in between discharges. 
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Let us consider a single cell and track the stochastic evolu- 
tion of the cell from the fully charged state to the completely 
discharged state. We define the smallest amount of capacity 
that may be discharged as a charge unit. Each fully charged 
cell is assumed to have a maximum available capacity of T 
charge units, and a nominal capacity of N charge units. The 
nominal capacity, N ,  is much less than T in practice and rep- 
resents the charge that could be extracted using a constant 
discharge profile. Both N and T vary for different kinds of 
cells and values of discharge current. 

We represent the cell behavior as a discrete time transient 
stochastic process, that tracks the cell state of charge. Fig- 
ure 4 shows a graphical representation of the process. At 
each time unit, the state of charge decreases from state i to 
the state i - n if n charge units are demanded from the battery. 
Otherwise, if no charge units are demanded, the battery may 
recover from its current state of charge (i) to a higher state 
(greater than i). The stochastic process starts from the state 
of full charge (V = Vm), denoted by N ,  and terminates when 
the absorbing state 0 (V = Vcu) is reached, or the maximum 
available capacity T is exhausted. In case of constant cur- 
rent discharge, N successive charge units are drained and the 
cell state goes from N to 0 in a time period equal to N time 
units. By allowing idle periods in between discharges, the 
battery can partially recover its charge during the idle times, 
and thus we can drain a number of charge units greater than 
N before reaching the state 0. 

r, (0 5-0 

Figure 4: Stochastic process representing the cell behavior 
In this model, the discharge demand is modeled by a 

stochastic process. Let us define qi to be the probability that 
in one time unit, called slot, i charge units are demanded. 
Thus, starting from N ,  at each time slot, with probability q; 
(i > 0), i charge units are lost and the cell state moves from 
state z to z - i (see Figure 4). On the other hand, with prob- 
ability qo an idle slot occurs and the cell may recover one 
charge unit (i.e., the cell state changes from state z to z + 1) 
or remain in the same state. 

The recovery effect is represented as a decreasing expo- 
nential function of the state of charge of the battery. To more 
accurately model real cell behavior, the exponential decay co- 
efficient is assumed to take different values as a function of 
the discharged capacity. 

During the discharge process, different phases can be iden- 
tified according to the recovery capability of the cell. Each 
phase f (f=O, ...,f,,) starts right after df charge units have 
been drained from the cell and ends when the amount of dis- 
charged capacity reaches df+l charge units. The probability 
of recovering one charge unit in a time slot, conditioned on 
being in state j (j=l,. . . ,N - 1) and phase f is 

where g N  and gc are parameters that depend on the recov- 
ery capability of the battery, and qo is the probability of an 
idle slot. In particular, a small value of g N  represents a high 
cell conductivity (i.e., a great recovery capability of the cell), 
while a large g N  corresponds to a high internal resistance, 
(i.e., a steep discharge curve for the cell). The value of gc 
is related to the cell potential drop during the discharge pro- 
cess, and therefore, to the discharge current. Given the recov- 
ery probability, the probability to remain in the same state of 
charge in an idle time while being in phase f is 

r , ( f )  = q O - p , ( f )  j = l ,  . . . ,  N - 1  
r N ( f )  = 4 0 .  (2) 

We assume that g N  is a constant, whereas gc is a piecewise 
constant function of the number of charge units already drawn 
off the cell, that changes value in correspondence with df  
(f = 1 ,  ..., fmer). We have do=O and ( d ~ , , ~ ~ + l  = T ,  while for 
df (f = 1, .. ., fmm) proper values are chosen according to the 
configuration of the battery. 

One simulation step of the battery cell assuming the input 
discharge demand as Bernoulli arrival is shown in Figure 5. 

Simulat i o n 3  tep 
inputs: Current-State, Recovery-Probability [ I ,  
DischargeRate 
outputs: NextS t a  t e  
begin 

Generate a random number R between 0 and I ; 
If (R < Discharge-Rate) then 

else if ( R < Recovely-Probability[Cum:nt-State]) then 

end if 

Next-State := Current-State - 1; 

Next-State := Current-State + 1; 

end 

Figure 5: The Basic Simulation-Step 
4.2 Validation of the Stochastic Model 
In this section we present a comparison between results ob- 
tained through the stochastic model and those derived from 
the PDE model of a dual lithium ion insertion cell. The dis- 
charge demand is assumed to be a Bernoulli process with 
probability q that one charge unit is required in a time slot. 
Note that in this discharge process the probability of an idle 
time (90) is (1 - q)  where as qi (i> I )  is equal to zero. 

The PDE model was numerically solved by using a pro- 
gram developed by Newman er al. [17]. Results relate to 
the first discharge cycle of the cell; thus, discharge always 
starts from a value of positive open-circuit potential equal to 
4.3071 V. We consider that the cut-off potential is equal to 
2.8 V and the current impulse duration is equal to 0.5 ms. 

Results obtained from the stochastic model are derived un- 
der the following assumptions: f- == 3, N equal to the num- 
ber of impulses obtained through the PDE model under con- 



stant discharge, and T equal to the number of impulses ob- 
tained through the PDE model when q = 0.1. 

Figure 6 presents the behavior of the delivered capacity 
normalized to the nominal capacity versus the discharge rate 
(9)  at which the current impulses are drained for three val- 
ues of current density: I=90, 100, and 110 Nm2.  It can be 
seen that the curves obtained from the PDE and the stochastic 
models match closely. 
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Figure 6: 
C;mparison of results obtained by the Stochastic Model (s) with the 
PDE model (e) 

For these cases, we assume gN=O and vary the parameters 
gc and df  (f=l, ...,f-) of the stochastic model according to 
the considered value of current density. Following this proce- 
dure, we obtain a maximum error equal to 4% and an average 
error equal to 1 %. 

4.3 Enhancement For Deterministic Discharge 
Profile 

To be able to use the model for battery-life estimation of SoC 
designs, we enhanced the model to accept any deterministic 
discharge demand, like the ones shown in Figures 2 and 3, 
instead of a stochastic discharge profile. 

At each step of the simulation, we look at the input dis- 
charge demand and draw an appropriate number of charge 
units (or change the state of the battery). Since a battery 
cannot respond to instantaneous changes in current, we have 
calculated average current over a time period of T, which is 
based on the time constant that characterizes the electrochem- 
ical phenomena. Given any current demand waveforms, we 
calculate the average current drawn over each time period 
and convert it to an appropriate number of charge units to be 
drawn in the battery model. We used a time constant T = 0.5 
ms for our experiments in this paper. 

4.4 Incorporation of Rate Capacity Effect 
As we have described earlier, the efficiency of the battery de- 
creases when the discharge current is more than the rated cur- 
rent (or Crared ). If the efficiency of the battery is p, (0 < p < 
l ) ,  for current I ,  we can claim that the actual current drawn is 
l / p  not I .  For example, if there is a demand of 2 charge units 
and the efficiency of the battery is 60% at that current level, 
then we would draw 3 charge units instead of 2. 

To incorporate this Rate Capacity effect, we change the 
number of charge units to be actually discharged. We cal- 
culate the actual number of charge particles to be discharged 

by looking up a table, which stores the relationship between 
the demanded charge units and actual charge units to be 
discharged, calculated based on the simulation of the PDE 
model. The basic step of the simulation, incorporating the 
Rate Capacity effect for any deterministic discharge demand, 
is described in Figure 7. 

S imula t i on-S t ep 
inputs: Current-S t a t e ,  CurrentDemand, 
Recovery-Probability [ 1 , Ef  f iciency-Table [ 1 
outputs: Next3 t a t  e 
variables: Ac  tualDemand 
begin 

Generate a random number R between 0 and 1 ; 
Actual-Demand := Efficiency-Table[Curnt-Demand]; 
If (Current-Demand > 0) then 

else if ( R < Recovery-Probability[Current-State]) then 

end if 

Next-State := Current-State - Actual-Demand; 

Next-State := Current-State + 1; 

end 

Figure 7: The Simulation-Step modeling Rare Capuciry effect 
We present results to validate our enhanced model in Sec- 

tion 6.  For estimating the battery lifetime and the energy de- 
livered by the battery of SoC designs, we need current de- 
mand waveforms for the system. The next section describes 
the methodology used to calculate cycle-accurate current de- 
mand waveforms for HW/SW mobile systems. 
5 Generating System Current Dis- 

charge Profiles 
In this section, we briefly describe the techniques that we 
used to generate system-level current discharge profiles. 
Please note that, while the focus of this paper is accurate and 
efficient estimation of the lifetime and delivered energy of the 
battery, system current discharge profiles are required as in- 
puts to the battery models presented earlier, hence we include 
a description of how they can be generated. 

We adapted the system-level power estimation framework 
presented in [9] for our purpose. It consists of a discrete- 
event co-simulation environment, power models for various 
system components (including processors, synthesized hard- 
ware, system-level buses, and memories), and speedup tech- 
niques that enable efficient power estimation for complex 
systems. As shown in [9], co-simulation (of the various 
system components) is necessary in order to obtain accu- 
rate power estimates. This is especially important in the 
context of battery life estimation, since we need accuracy 
in the current (hence, power) waveforms, not just the av- 
erage power or total energy. To estimate the power dissi- 
pation in a programmable processor component, we use an 
instruction-set simulator enhanced with an instruction-level 
power model [ 181. For application-specific hardware, we use 
fast-synthesis and power simulation of the synthesized netlist. 
For system-level buses, we estimate the switched capacitive 
power consumed in the bus by using bus line capacitances 
(calculated from bus length and width parameters provided 
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by the designer), and switching activity (derived from the bus 
trace provided by the co-simulation tool). For memory cores, 
we use the access and idle power specifications from the core 
provider’s data sheets. 

In this section, we demonstrate how our proposed battery life 
estimation technique can be used to evaluate different sys- 
tem implementations and select a battery-optimal implemen- 
tation. We report results obtained by applying the proposed 
battery life estimation methodology on three system imple- 
mentations, SYSI, SYS2 and SYS3, of the TCPAP network 
interface subsystem, shown in Figure 1 .  In the first imple- 
mentation (SYSI), the incoming packets are processed in a 
pipelined manner; for example, while Chksum is process- 
ing one packet, CreatePacket starts writing the next packet 
to memory. Figure 8(a) shows the arrival and processing of 
packets over time for SYS1. The cumulative current profile 
for this system is shown in Figure 8(b), with the total current 
(in mA) plotted over time (in ms). Alternative ways of pro- 
cessing the packets lead to the second (SYS2) and the third 
(SYS3) implementations, as shown in Figures 8(c) and 8(e) 
respectively. The corresponding current profiles are shown in 
Figures 8(d) and 8(f) respectively. 

6 Experimental Results & Application 

(mA) (k) 1 RatedCument Slots (ms). 
380 175 1 100 0 2.5 
330 154 1 60 0 2.5 
330 85 30 40 5.0 

Table 2: Characteristics of Example Discharge Profiles 
I System 11 Max-Cur I Ava-Cur I 5% Slots Above I 5% Idle I Latency I 

Table 2 shows the characteristics of the discharge profiles, 
in terms of the maximum current (Max-Cur), the average cur- 
rent (Avg-Cur), percentage of time slots with current above 
the rated current (7’0 Slots Above Rated Current), percentage 
of idle slots in the discharge demand (% Idle Slots) and fi- 
nally the latency of processing the packets (Latency). For our 
experiments, we used a Li-ion battery with the following pa- 
rameters : V, = 43V, V,, = 2.8V. and Crnted = 125mA. Table 
2 shows that neither SYSl nor SYS2 have any idle slots in the 
discharge demand, where as the discharge demand for SYS3 
has 40% idle slots. It can be noticed that SYSl violates the 
rated current maximum number of times among the three im- 

plementations. 
We measured the Delivered Specific Energy (the energy 

delivered by a battery of unit weight) and the Battery Life- 
time for the above implementations using the proposed bat- 
tery model. The battery model, we iused for our simulation, 
has Nominal Capacity(N) = 650,000 charge units and Theo- 
retical Capacity(T) = 1,000,000 charge units, obtained from 
the accurate PDE model of the considered Li-ion battery. The 
re-charging probabilities are appropriately set to accurately 
model the battery phenomena. 

Table 3 shows the results of estimlation using our stochas- 
tic battery model for the discharge profiles. In our estimation, 
we repeat simulation of any given discharge demand till the 
battery is discharged and report the delivered specific energy 
and battery lifetime. Each row in the table represents one of 
the example implementations described earlier. Columns 2 
and 3 report the delivered specific energy and the battery life- 
time when only the effect of Rate Capacity is modeled, as 
proposed in [5 ,6] .  Similarly, columms 4 and 5 show estima- 
tion results when only the effect of Recovely is considered, 
like the model proposed in [ 161. The last three columns re- 
port results when both the Rare Capacity and Recovery effects 
are modeled, as proposed in this paper. In this case, in col- 
umn 7, we also report the number of packets processed before 
the battery is completely discharged. 

It can be seen from Table 3 that the different implementa- 
tions have significantly different delivered energy and battery 
lifetimes. For example, looking at columns 6,7 and 8 in Ta- 
ble 3, we see that SYSl has 1.369 \ W K g  delivered specific 
energy and 16875ms of lifetime, and processes 20250 pack- 
ets before the battery is discharged. SYS2, whose discharge 
profile has 40% less slots above the rated current than the dis- 
charge profile of SYSl (Table 2), can draw more than twice 
as much delivered energy from the: same battery as SYSI, 
and shows four times increase in tb:. battery lifetime as well 
as the number of packets processed However, SYS3, whose 
discharge profile also has 40% idle slots, enhances the deliv- 
ered energy and the battery lifetime even more significantly, 
by a factor of 1.3 and 2.3 over SYSZ, respectively. SYS3 also 
shows 15% increase in the number of packets processed. 

Table 3 also shows that both the Rate Capacity effect 
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System 

SYSl 
SYS2 
SYS3 

Rate Capacity Effect Recovery Effect Rate Capacity & Recovery Effect 
Delivered Delivered Delivered 

Spec.Energy Life lime Spec. Energy Life ‘lime Spec. Energy Life Time Packets 
( W m g )  (ms) (WMKg) (ms) ( W g )  (ms) Processed 

1.369 16875 13.357 163650 1.369 16875 20250 
3.754 67717 15.553 280543 3.754 67117 81260 
2.858 88383 32.924 11 15616 4.974 153817 92290 

and Recovery effect need to be considered simultaneously 
to be able to accurately measure the significant differences. 
For example, if only the Rate Capacity effect is considered 

System 

SYSl 
SYS2 
SYS3 

(columns2 and 3), the delivered energy and battery lifetimes 
obtained for SYS 1 and SYS2 are accurate, as the correspond- 
ing discharge profiles do not have any idle times. However, 
the estimates for SYS3, which have significant idle times, are 
very inaccurate since the Recovery effect is not considered. 
Note that, though the fraction of current above the rated cur- 
rent is less in SYS3 than SYS2 (Table 2), the delivered en- 
ergy calculated for SYS3 is less than that for SYS2. This is 
because the amount of offset from the rated current is more in 
case of SYS3 than in SYS2 (which is due to inaccuracy intro- 
duced by calculating average current instead of using instan- 
taneous current). On the other hand, when only the Recovery 
effect is modeled (columns 4 and 5 ) ,  we get significant im- 
provement in delivered specific energy for SYS3. However, 
the values of specific energy delivered for all the three cases 
are significantly more than when only the Rate Capacity ef- 
fect is considered, since these results do not reflect the di- 
minishing battery efficiency due to the Rate Capacity effect. 
As noted earlier, by considering both the effects simultane- 
ously, our stochastic model can estimate the delivered energy 
and lifetimes accurately, as shown in the last two columns of 
Table 3. 

Finally, we validate our proposed model by comparing it 
with the accurate PDE model. Table 4 shows the delivered 
specific energy and the battery lifetimes for the three imple- 
mentations, and corresponding percentage errors. The last 
two columns show the CPU time for the two models. 

Our experimental results demonstrate that our stochastic 
model based approach is significantly faster than the PDE 
model. Since it only takes time in the order of seconds, 
as opposed to days taken by the PDE model, our approach 
can be used for design-space exploration to identify the most 
battery-efficient implementation of a mobile embedded sys- 
tem, which is not possible to do with the existing PDE model. 
At the same time our proposed approach does not compro- 
mise on accuracy, by modeling both the Rate Capacity and 
the Recovery effects, as opposed to the existing Rate Capac- 
ity based estimation techniques [5, 61. 

We have presented a stochastic model of battery and a frame- 
work for estimating the battery life as well as the delivered 
energy for system-level design space exploration of battery- 

7 Conclusion and Future Work 

-. 
(WhjKg) (ms) iime 

STOC PDE %Err STOC PDE %Err S TOC PDE 
1.36 1.33 2.25 16785 17264 2.85 18.62sec >1 Day 
3.75 3.79 1.06 67717 65723 2.94 19.52sec > I  Day 
4.97 5.07 2.01 153817 154956 1.00 40.35sec >2Days 

powered mobile embedded systems. The model proposed is 
fast enough to enable iterative battery life estimation for sys- 
tem level exploration. At the same time, it is very accurate, 
as validated using an accurate PDE model. In future, we will 
use the developed framework for exploring how system ar- 
chitectures can be made battery-efficient and for suggesting 
the optimum battery configuration for any HW/SW embed- 
ded system. 
References 

[ I ]  A. R. Chandrakasan and R.W. Broderson, Low Power Digital CMOS 
Desinn, Kluwer Academic Publishers, Norwell, MA, 1995. 
J. Rabaey and M. Pedram (Editors) Low Power Design Methodolo- 
gies, Kluwer Academic Publishers, Norwell, MA, 1996. 
URL : http://www.valence-tech.com/products/ 65krear.html 
T. Simunic, L. Benini and G. De Micheli, “ Cycle-Accurate Simula- 
tion of Energy Consumption in Embedded Systems”, Proceedings of 
DAC, 1999, New Orleans, USA, 1999 
T. Simunic, L Benini and G. De Micheli, “ Energy-Efficient Design 
of Battery-Powered Embedded Systems”, Proceedings 1999 ISLPED, 

S. Gold, “A PSPICE Macromodel for Lithium-Ion Batteries”, Pro- 
ceedings of the 12th Battery Conference, pp. 9-15, 1997. 
S.C.Hageman, “Simple PSPICE Models Let You Simulate Common 
Battery Types”, EDN, pp. 117-132. Oct. 1993. 
L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino and R. Scarsi, 
“A Discrete-Time Battery Model for High-Level Power Estimation”, 
Proceedings of DATE,2OOO, pp 35-39. 
M .  Lajolo. A. Raghunathan. S .  Dey and L. Lavagno, “Efficient Power 
CO-estimation Techniques for System-on-Chip Design”, Proceedings 

M. Doyle and J.S. Newman, “Analysis of capacity-rate data for 
lithium batteries using simplified models of the discharge process”. 
J. Applied Electrochem., vol. 27, no. 7, pp. 846-856, July 1997. 
T.F. Fuller, M. Doyle, and J.S. Newman, “Relaxation phenomena in 
lithium-ion-insertion cells,” J. Electrochem. Soc., vol. 141, no. 4, pp. 
982-990, Apr. 1994. 
R.M. LaFollette, “Design and performance of high specific power, 
pulsed discharge, bipolar lead acid batteries,” 10th Annual Battery 
Corference on Applications and Advances, Long Beach, pp. 43-47, 
Jan. 1995. 
B. Nelson, R. Rinehart, and S. Varley, “Ultrafast pulse discharge 
and recharge capabilities of thin-metal film battery technology”, 11th 
IEEE International Pulsed Power Conference, Baltimore, pp. 636- 
641, June 1997. 
M. Doyle, T.F. Fuller, J.S. Newman, “Modeling of galvanostatic 
charge and discharge of the lithium/polymer/inserion cell,” J. Elec- 
trochem. Soc., vol. 140, pp. 1526-1533, 1993. 
C.F. Chiasserini, R.R. Rao, “A traffic control scheme to optimize the 
battery pulsed discharge,” Proc. of Milcom’99, Atlantic City, NJ, Nov. 
1999. 
C.F. Chiasserini, R.R. Rao, “Energy efficient battery management,” 
Proc. of Infoconi 2000, Tel Aviv, Israel, March 2000. 
J.S. Newman, FORTRANprograms for simulation of electrochemical 
systems, http : / /www. cchem. berkeley . edu/-j sngrp/. 
V. Tiwari, S .  Malik and A. Wolfe, “Power Analysis of embedded soft- 
ware: A first step towards software power minimization”, IEEE Trans. 
V U 1  Systems, Vol. 2, No 4, pp. 437-445. 

pp 212-217,1999 

Of DATE, 2000, pp 27-34. 

63 

http://www.valence-tech.com/products

